Linkages between tree architectural designs and life-history strategies in a subtropical montane moist forest

Linkages between tree architectural designs and life-history strategies in a subtropical montane moist forest

Publication date: 15 April 2019

Source: Forest Ecology and Management, Volume 438

Author(s): Yaozhan Xu, Yoshiko Iida, Haiyan Huang, Zheng Shi, Scott B. Franklin, Yiqi Luo, Dachuan Bao, Xiujuan Qiao, Zhijun Lu, Mingxi Jiang


Tree architecture is crucial to maximizing light capture, determined by carbon allocation of individual trees, and consequently characterizes species-specific growth strategies. Its variation and associated life-history strategies have been examined in tropical and temperate forests, but not in subtropical forests. Moreover, a similar architectural pattern was found using a hierarchical Bayesian model in a tropical forest, which differed from most of previous studies. Here, we employed a hierarchical Bayesian model to examine tree architecture differences and associations with adult stature and light requirement among 59 subtropical co-occurring species. Architectural variations among tree species with different seed dispersal and leaf phenology types were analyzed. Most species showed similar architecture in the height of the lowest foliage-tree height relationships (FH) and the long side of crown- tree height relationships (W1H), but some species showed interspecific variations in tree height-stem diameter relationships (HD) among the 59 co-occurring species in the subtropical montane forest. Trees developed deeper and larger crowns at mid-elevation compared to the tropical and temperate forests. Parameters of HD relationship differed in leaf phenology and dispersal types, and intercepts of F-H relationship and W1H relationship differed in leaf phenology. Large-statured species had more slender stems, and shallower and narrower crowns at small sizes, but similar crowns at large sizes. Light-demanding species showed weak correlations between architectural variables and light requirement but exhibited wide crowns at the intermediate sizes. In general, size-dependent architectural differentiation was driven mainly by adult stature and light requirement in subtropical forest. Coexistence species showed different life-history strategies in light capture, which may help provide options in forest thinning and harvesting in subtropical forest. Species-specific tree architectural models of 59 co-occurring species represent three-dimensional (3D) structure of this subtropical forest accurately, but also support for future terrestrial laser scanning (TLS) data analysis.


via ScienceDirect Publication: Forest Ecology and Management

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s