Climate Change Friendly “Clean Gas” Movement Gathers Momentum

Climate Change Friendly “Clean Gas” Movement Gathers Momentum

http://bit.ly/2HQ8V6g

Guest essay by Eric Worrall

Green plan to make natural gas from US fracking operations really expensive and dangerous.

Reenvisioning The Role For Natural Gas In A Clean Energy Future

Clean” gas, or hydrogen sourced from natural gas, represents an alternative that has been receiving increased attention.

If the process of converting natural gas into hydrogen is combined with CO2 capture and storage, the bulk of the associated emissions can be avoided.

By Dolf Gielen, Morgan D. Bazilian, and Kenneth B. Medlock III

To meet climate goals, enormous changes to the world’s energy systems are required. The impacts will no doubt be significant for fossil fuels ranging from coal, to oil, to natural gas. With regard to natural gas, various regional and national pipeline systems represent important and large infrastructures with long life spans. Additionally, natural gas resources—proven, probable, and possible—represent an enormous asset. So, strategies that avoid stranded costs along the natural gas value chain while being aligned to climate objectives are attractive. “Clean” gas, or hydrogen sourced from natural gas, represents an alternative that has been receiving increased attention.

If the process of converting natural gas into hydrogen is combined with CO2 capture and storage, the bulk of the associated emissions can be avoided. Still, worldwide just three plants for hydrogen production are employing CCS (Air products, Quest, and ACTL Sturgeon). One plant has dedicated storage while the others use the CO2for enhanced oil recovery, but quantities are modest, each at around 1 Mt per year.

Read more: https://www.forbes.com/sites/thebakersinstitute/2019/02/01/re-envisioning-the-role-for-natural-gas-in-a-clean-energy-future/

How much energy do you discard if you convert methane to hydrogen?

According to World Nuclear Association:

Hydrogen 120-142 MJ/kg
Methane (CH4) 50-55 MJ/kg

HOWEVER the molecular weight of methane is carbon (12) + Hydrogen (1) x 4 = 16.
The molecular weight of Hydrogen (H2) = 2

If you start with 1kg of methane and discard the carbon (12 of 16, 3/4 of the mass of the methane molecule), you only end up with a quarter of a kilo of hydrogen.

So even assuming a perfect zero cost conversion, 1kg of Methane (50 MJ) gets converted to 0.25Kg of Hydrogen (30MJ) – an immediate loss 2/5 of the original energy.

When you add the cost of building and maintaining the conversion plant, you have at least doubled the cost of gas.

Add to this the difficulties of handling hydrogen – hydrogen leaks prolifically (small H2 molecules find every crack), it can burn in air with a flame so hot it radiates ultraviolet (like a welding torch), and it ignites, often explosively, at a very wide range of hydrogen concentrations in air; in my opinion a hydrogen economy would be an economy which kills people.

The following is a video of some explosive hydrogen experiments performed by the University of Nottingham.

Superforest,Climate Change

via Watts Up With That? http://bit.ly/1Viafi3

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s