Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains

Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains

http://bit.ly/2CjyFCh

Publication date: 1 March 2019

Source: Forest Ecology and Management, Volume 435

Author(s): Pavel Janda, Alan J. Tepley, Jonathan S. Schurman, Marek Brabec, Thomas A. Nagel, Radek Bače, Krešimir Begovič, Oleh Chaskovskyy, Vojtěch Čada, Martin Dušátko, Michal Frankovič, Ondrej Kameniar, Daniel Kozák, Jana Lábusová, Thomas Langbehn, Jakub Málek, Martin Mikoláš, Markéta H. Nováková, Kristýna Svobodová, Michal Synek

Abstract

Disentangling the importance of developmental vs. environmental drivers of variation in forest biomass is key to predicting the future of forest carbon sequestration. At coarse scales, forest biomass is likely to vary along major climatic and physiographic gradients. Natural disturbance occurs along these broad biophysical gradients, and depending on their extent, severity and frequency, could either amplify or dampen spatial heterogeneity in forest biomass. Here we evaluate spatial variation in the basal area of late-successional Picea abies (L./Karst.) forests across the Carpathian Mountain Range of central Europe and compare the roles of coarse-scale biophysical gradients and natural disturbances in driving that variation across a hierarchy of scales (landscapes, stands, and plots). We inventoried forest composition and structure, and reconstructed disturbance histories using tree cores collected from 472 plots nested within 30 late-successional stands, spanning the Carpathian Mountains (approximately 4.5 degrees of latitude). We used linear mixed-effects models to compare the effect of disturbance regimes and site conditions on stand basal area at three hierarchical scales. We found that the basal area of late-successional Picea abies forests varied across a range of spatial scales, with climatic drivers being most important at coarse scales and natural disturbances acting as the primary driver of forest heterogeneity at fine scales. For instance, the stand-level basal area varied among landscapes, with the highest values (48–68 m2 ha−1) in the warmer southern Carpathian Mountains, and lower values (37–52 m2 ha−1 on average) in cooler areas of the eastern and western Carpathians. Finer-scale variation was driven by local disturbances (mainly bark beetle and windstorms) and the legacies of disturbances that occurred more than a century ago. Our findings suggest that warming could increase the basal area of northern sites, but potential increasing disturbances could disrupt these environmental responses.

Superforest

via ScienceDirect Publication: Forest Ecology and Management http://bit.ly/2EECi8G

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s