A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions

A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions

https://ift.tt/2SI2ALD

Publication date: 15 February 2019

Source: Forest Ecology and Management, Volume 433

Author(s): Syed Adnan, Matti Maltamo, David A. Coomes, Antonio García-Abril, Yadvinder Malhi, José Antonio Manzanera, Nathalie Butt, Mike Morecroft, Rubén Valbuena

Abstract

Reliable assessment of forest structural types (FSTs) aids sustainable forest management. We developed a methodology for the identification of FSTs using airborne laser scanning (ALS), and demonstrate its generality by applying it to forests from Boreal, Mediterranean and Atlantic biogeographical regions. First, hierarchal clustering analysis (HCA) was applied and clusters (FSTs) were determined in coniferous and deciduous forests using four forest structural variables obtained from forest inventory data – quadratic mean diameter , Gini coefficient , basal area larger than mean and density of stems –. Then, classification and regression tree analysis (CART) were used to extract the empirical threshold values for discriminating those clusters. Based on the classification trees, and were the most important variables in the identification of FSTs. Lower, medium and high values of and characterize single storey FSTs, multi-layered FSTs and exponentially decreasing size distributions (reversed J), respectively. Within each of these main FST groups, we also identified young/mature and sparse/dense subtypes using and . Then we used similar structural predictors derived from ALS – maximum height (), L-coefficient of variation (), L-skewness (), and percentage of penetration (), – and a nearest neighbour method to predict the FSTs. We obtained a greater overall accuracy in deciduous forest (0.87) as compared to the coniferous forest (0.72). Our methodology proves the usefulness of ALS data for structural heterogeneity assessment of forests across biogeographical regions. Our simple two-tier approach to FST classification paves the way toward transnational assessments of forest structure across bioregions.

Superforest

via ScienceDirect Publication: Forest Ecology and Management https://ift.tt/2zaqiu8

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s