The “solar road” results are in, and predictably, they suck

The “solar road” results are in, and predictably, they suck

https://ift.tt/2MXWMK0

Four years ago a viral campaign wooed the world with a promise of fighting climate change and jump-starting the economy by replacing tarmac on the world’s roads with solar panels. The bold idea has undergone some road testing since then. The first results from preliminary studies have recently come out, and they’re a bit underwhelming.

A solar panel lying under a road is at a number of disadvantages. As it’s not at the optimum tilt angle, it’s going to produce less power and it’s going to be more prone to shading, which is a problem as shade over just 5 per cent of the surface of a panel can reduce power generation by 50 per cent.

The panels are also likely to be covered by dirt and dust, and would need far thicker glass than conventional panels to withstand the weight of traffic, which will further limit the light they absorb.

One of the first solar roads to be installed is in Tourouvre-au-Perche, northwest France. This has a maximum power output of 420kW, covers 2800sq m and cost €5 million ($8 million) to install. This implies a cost of €11,905 ($A19,230) per installed kW.

While the road is supposed to generate 800kWh/day (kilowatt hours per day), some recently released data indicates a yield closer to 409kWh/day, or 150,000kWh/yr.

For an idea of how much this is, the average home uses around 10kWh/day. The road’s capacity factor — which measures the efficiency of the technology by dividing its average power output by its potential maximum power output — is just 4 per cent.

In contrast, the Cestas solar plant near Bordeaux, which features rows of solar panels carefully angled towards the sun, has a maximum power output of 300,000kW and a capacity factor of 14 per cent. And at a cost of €360 million ($A581 million), or €1200 ($A1938) per installed kilowatt, one-tenth the cost of the solar roadway, it generates three times more power.

Several of their SR3 panels have been installed in a small section of pavement in Sandpoint, Idaho. This is 13.9sq m in area, with an installed capacity of 1.529kW. The installation cost is given as $US48,734 (about $A67,000), which implies a cost per installed kilowatt of $A44,420 more than 20 times higher than the Cestas power plant.

And this is before we look at the actual data from the Sandpoint installation, which generated 52.397kWh in six months, or 104.8kWh over a year. From this we can estimate a capacity factor of just 0.782 per cent, which is 20 times less efficient than the Cestas power plant.


Full story here: https://www.heraldsun.com.au/motoring/on-the-road/solar-panels-replaced-tarmac-on-a-motorway-here-are-the-results/news-story/cd6394fb9f8ac02d90e05c318e550fc5

h/t to Ozspeakup

Dylan Ryan is a lecturer in Mechanical & Energy Engineering at Edinburgh Napier University.

Superforest,Climate Change

via Watts Up With That? https://ift.tt/1Viafi3

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s