Long-term development of natural regeneration in irregular, mixed stands of silver fir and Norway spruce

Long-term development of natural regeneration in irregular, mixed stands of silver fir and Norway spruce

https://ift.tt/2OUmIbo

Publication date: 15 December 2018

Source: Forest Ecology and Management, Volume 430

Author(s): Adrian Dănescu, Ulrich Kohnle, Jürgen Bauhus, Aaron Weiskittel, Axel T. Albrecht

Abstract

The timely establishment of natural regeneration of the preferred species after the death or removal of mature trees is essential in continuous-cover forestry. In the context of the gradual shift from even-aged and monospecific to uneven-aged and/or mixed forest stands, the limited availability of statistical models to predict seedling establishment, survival, and growth has increasingly become a bottleneck for forest management planning and, ultimately, a potential limitation to a wider adoption of alternative silvicultural approaches.

We investigated the development of top height and density of natural regeneration in 19 uneven-structured, mixed silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) H. Karst.) stands in southwestern Germany using long-term observations (35 years) from permanent plots. We used linear mixed-effects models to analyze the influence of overstory and understory-related variables on regeneration of fir and spruce.

The height of the five tallest juvenile trees per regeneration subplot and species increased significantly with diminishing canopy cover and increasing structural diversity of the overstory. However, competition exerted by tall juveniles substantially impacted the development of smaller neighbors, which were less able to profit from favorable overstory conditions. These results indicate that canopy cover and structural diversity need to be taken into account when modeling height development of juvenile trees in irregular stands. Importantly, these results also demonstrate the potential of silvicultural interventions to shorten the time period when terminal shoots are vulnerable to browsing.

Densities of juvenile trees displayed a unimodal relationship with the mean height of the regeneration. Fir and spruce densities culminated at a mean height of approx. 50 cm and decreased rapidly afterwards. This pattern indicates an early onset of competition within the regeneration layer. For both species, juvenile densities were unrelated to overstory structural diversity, yet they showed positive relationships with overstory density and site productivity.

Overall, fir juveniles developed faster in height than spruce juveniles. Even rather rapid group-shelterwood cutting regimes with complete canopy removal within two decades still favored fir regeneration. In addition, a high proportion of fir in the regeneration cohort had a stronger negative effect on spruce juvenile density than vice versa. Since spruce is less shade-tolerant than fir, it is likely that fir will dominate the future stand composition.

Overall, our models provide the basis to predict natural regeneration dynamics in structurally complex stands dominated by fir and spruce and to further evaluate alternative treatment scenarios.

Superforest

via ScienceDirect Publication: Forest Ecology and Management https://ift.tt/2zaqiu8

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s