Predictive analytics of tree growth based on complex networks of tree competition

Predictive analytics of tree growth based on complex networks of tree competition

Publication date: 1 October 2018
Source:Forest Ecology and Management, Volume 425
Author(s): Domen Mongus, Urša Vilhar, Mitja Skudnik, Borut Žalik, David Jesenko

Competition between individual trees is a major factor influencing the development of forests. However, due to the complexity of such interactions, that span over vast geographic areas, systematic analysis of competition has only recently become possible through the concepts of so-called predictive analytics. The rationale behind the utilised approach is that a prediction model, which is capable of forecasting future increments of tree development parameters accurately, contains knowledge about the underlying relationships that govern them. The analysis of such model, therefore, holds the potential to reveal new insights into the critical factors that influence forest developments. Within this study, we utilise an Evolutionary Algorithm in order to enable predictive analytics based on a complex-network representation of competition. This allowed us to study the patterns related to spatial distribution of individual trees. We discovered that triplets of competing trees, and their betweenness centralities, have significantly greater influence on the development of each individual tree than traditionally observed parameters like the number of a tree’s competitors and distances between them. While this indicates preferable spatial patterns for optimal forest development, the introduced methodology proved to be an efficient predictive analytics tool that allows for their discovery.


via ScienceDirect Publication: Forest Ecology and Management

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s