As an historic solar minimum approaches, space radiation becoming more hazardous

As an historic solar minimum approaches, space radiation becoming more hazardous

UNH researchers find space radiation is increasingly more hazardous

DURHAM, N.H. – It might sound like something from a science fiction plot – astronauts traveling into deep space being bombarded by cosmic rays – but radiation exposure is science fact. As future missions look to travel back to the moon or even to Mars, new research from the University of New Hampshire’s Space Science Center cautions that the exposure to radiation is much higher than previously thought and could have serious implications on both astronauts and satellite technology.

“The radiation dose rates from measurements obtained over the last four years exceeded trends from previous solar cycles by at least 30 percent, showing that the radiation environment is getting far more intense,” said Nathan Schwadron, professor of physics and lead author of the study. “These particle radiation conditions present important environmental factors for space travel and space weather, and must be carefully studied and accounted for in the planning and design of future missions to the moon, Mars, asteroids and beyond.”

In their study, recently published in the journal Space Weather, the researchers found that large fluxes in Galactic Cosmic Rays (GCR) are rising faster and are on path to exceed any other recorded time in the space age. They also point out that one of the most significant Solar Energetic Particle (SEP) events happened in September 2017 releasing large doses of radiation that could pose significant risk to both humans and satellites. Unshielded astronauts could experience acute effects like radiation sickness or more serious long-term health issues like cancer and organ damage, including to the heart, brain, and central nervous system.

In 2014, Schwadron and his team predicted around a 20 percent increase in radiation dose rates from one solar minimum to the next. Four years later, their newest research shows current conditions exceed their predictions by about 10 percent, showing the radiation environment is worsening even more than expected.

“We now know that the radiation environment of deep space that we could send human crews into at this point is quite different compared to that of previous crewed missions to the moon,” says Schwadron.

The authors used data from CRaTER on NASA’s Lunar Reconnaissance Orbiter (LRO). Lunar observations (and other space-based observations) show that GCR radiation doses are rising faster than previously thought. Researchers point to the abnormally long period of the recent quieting of solar activity. In contrast, an active sun has frequent sunspots, which can intensify the sun’s magnetic field. That magnetic field is then dragged out through the solar system by the solar wind and deflects galactic cosmic rays away from the solar system – and from any astronauts in transit.

For most of the space age, the sun’s activity ebbed and flowed like clockwork in 11-year cycles, with six- to eight-year lulls in activity, called solar minimum, followed by two- to three-year periods when the sun is more active. However, starting around 2006, scientists observed the longest solar minimum and weakest solar activity observed during the space age.

Despite this overall reduction, the September 2017 solar eruptions produced episodes of significant Solar Particle Events and associated radiation caused by particle acceleration by successive, magnetically well-connected coronal mass ejections. The researchers conclude that the radiation environment continues to pose significant hazards associated both with historically large galactic cosmic ray fluxes and large but isolated SEP events, which still challenge space weather prediction capabilities.


The paper:

Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep‐space exploration

Over the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron et al. (2014a), the cycle 23–24 solar activity led to the longest solar minimum in more than 80 years and continued into the “mini” solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded the levels observed throughout the space age, and we observed small solar energetic particle events. Here, we provide an update to the Schwadron et al (2014a) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). The Schwadron et al. (2014a) study examined the evolution of the interplanetary magnetic field, and utilized a previously published study by Goelzer et al. (2013) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections (CMEs). This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ∼20% increase of dose rates from one solar minimum to the next, and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron et al. (2014a) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ∼10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low‐energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in almost a decade occurred in Sept 2017 after more than a year of all‐clear periods. These particle radiation conditions present important issues that must be carefully studied and accounted for in the planning and design of future missions (to the Moon, Mars, asteroids and beyond)

Superforest,Climate Change

via Watts Up With That?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s