Fubar Science from @UCDavis – Coping with climate stress in Antarctica

Fubar Science from @UCDavis – Coping with climate stress in Antarctica


Coping with climate stress in Antarctica

Some polar fish can cope with warming or ocean acidification, but not both together

Some Antarctic fish living in the planet’s coldest waters are able to cope with the stress of rising carbon dioxide levels the ocean. They can even tolerate slightly warmer waters. But they can’t deal with both stressors at the same time, according to a study from the University of California, Davis.

The study, published recently in the journal Global Change Biology, of emerald rockcod is the first to show that Antarctic fishes may make tradeoffs in their physiology and behavior to cope with ocean acidification and warming waters.

Emerald rockcod in Antarctica can handle some increases in temperature and carbon dioxide levels, but not both at the same time. With climate change, you rarely have one climate stressor without the other. CREDIT Rob Robbins/US Antarctic Program

(The research is described in a web feature, “The Last Stop,” at the UC Davis Science & Climate website.)

“In dealing with climate stress, these fish are really bad multi-taskers,” said senior author Anne Todgham, an associate professor with the UC Davis Department of Animal Science. “They seem quite capable of coping with increases in CO2, and they can compensate for some warming. But they can’t deal with both stressors at the same time. That’s a problem because those things happen together–you don’t get CO2 dissolving in the ocean independent of warming.”


Antarctic fishes live in water that is typically about -1.9C (28.6F). At their field site in Antarctica, the authors exposed emerald rockcod to two temperatures: -1 degree Celsius (30F) and 2 degrees Celsius (36F). The latter is the threshold for global warming that the Paris Agreement targets to prevent the most catastrophic impacts of climate change. They also exposed the fish to treatments of three different levels of CO2 ranging from ambient to elevated projected levels.

Increased CO2 levels by themselves had little impact on the fish. After a couple of weeks, heart, ventilation and metabolic rates increased with warming. Their behavior also changed with warming. The fish swam less and preferred dark zones, which suggests they were attempting to conserve energy. Then after 28 days, juvenile rockcod were able to compensate for the warming temperatures. However, this temperature compensation only happened in the absence of rising CO2.


While some species are beginning to shift to cooler places to escape warming habitats, polar fish have no colder places to go. They have to cope by using their existing physiology, which the study shows is limited.

Emerald rockcod help form the basis of the Antarctic food web, supporting an ecosystem of species such as Emperor penguins and seals.

“The Antarctic has contributed very little to the production of greenhouse gases, and yet it’s one of the places on the planet receiving the most impact,” Todgham said. “I feel we have responsibility to care about the spaces that are so fragile. If we can provide reservoirs of areas that are less stressful to plants and animals through protecting natural places, we can buy ourselves some time to deal with things like climate change that will take a long time to get in line.”


The study’s authors include lead author and Ph.D student Brittany Davis, Erin Flynn and Nann Fangue of UC Davis, Frederick Nelson of UC Davis and Howard University; and Nathan Miller from San Francisco State University.

The above is the press release from Eurekalert, which conveniently left out this passage from the “feature” at UCDavis:

Back at the research station, Todgham and her team place the eggs and juveniles in plastic buckets with water that is 2 degrees Celsius, a temperature scientists predict will be the norm in 80 years. Researchers pump in various levels of CO2 via colorful tubes that snake in and out of each bucket.

For several weeks, Todgham measures how the fish cope. She looks at gene expression, the cellular stress response, metabolic changes and physiological factors like activity level and growth rates.

“We’re trying to predict how each species will cope with warmer water and higher CO2 emissions,” Todgham said.

The short answer: not well.

As anyone who has ever owned a saltwater aquarium and tried to keep it alive without crashing can tell you, a tank, let alone a plastic bucket, is a far cry from the actual ocean. Of course these sci-fi kids don’t seem to understand that switching the environment from the sea to a plastic bucket is a stressor in and off itself. Further, the speed at which the water temperature change is induced on these hapless creatures removes any possibility of a long term natural adaptations. Let’s reduce 80+ years of predicted climate change induced ocean temperature change to a few days in a bucket, without accounting for that change of environment, yeah, that’s the ticket.

I mean seriously, this is science? This isn’t even at the junior science fair level.

Then there’s this:

Polar fish have nowhere colder to go, but so far, it looks like other species have not migrated in to their ecosystem. Antarctica is ringed by a circumpolar current that acts like a barrier, so it would not be easy for aquatic creatures to migrate in.

“Except for the crabs,” Todgham says. “It looks like they can enter by marching along the bottom.”

Gosh, a current is a “barrier” to fish? They can’t swim in water with a current? According to Woods Hole Oceanographic Institute, the speed of the Antarctic Circumpolar Current is pretty low:

It is a very cold current with temperatures ranging from –1 to 5°C depending on the time of the year, and with speeds up to 2 knots (2.3 miles per hour or 3.7 km per hour). This is the same speed as a brisk walk. Antarctica is also the birthplace of deep ocean waters that make up part of the global Ocean Conveyor.

It’s more likely that fish at lower southern hemisphere latitudes don’t like the subfreezing water near Antarctica and aren’t equipped with the cellular antifreeze to deal with it. So, they don’t go there.

The stupid, it burns.

You think that’s bad, watch the video they produced which due to the number of smiling headshots and irrelevant imagery of seals and penguins looks more like “my grant sponsored summer vacation in Antarctica”.

Superforest,Climate Change

via Watts Up With That? http://ift.tt/1Viafi3

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s